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We study a cellular automaton that generates avalanches reminiscent of those occurring in granular
materials and fault displacements. We show that the temporal evolution of a suitably defined macro-
scopic variable, the mean energy of the system, can be described as a stochastic Markov process. We
solve the corresponding master equation and confirm the appropriateness of the theory by comparing

with the results of the automaton.

PACS number(s): 05.40.+j

I. INTRODUCTION

Long periods of mechanical stability with sudden ca-
tastrophic events in between are a ubiquitous characteris-
tic of macroscopic systems subject to steady ‘“‘external”
loads. Such is the behavior of geological faults [1-3],
which, subject to the stresses of the steady drift of the
tectonic plates, results in sudden, somewhat local, long
displacements of the fault, namely, earthquakes; an event
such as this releases the stress accumulated and, in some
sense, rests the system to a more stable state. It is also
the behavior of the surface of a pile of sand [4-9] or of
any granular material, which after adding more and more
grains to, it reaches angles at which the pile is no longer
stable and an avalanche occurs. By keeping the external
agent acting at a steady rate, this behavior is repeated at
irregular intervals.

In this article we study a two-dimensional cellular au-
tomation that shows the main features of the behavior de-
scribed above. The model considered here is part of a
wider class of models discussed in detail by Lomnitz-
Adler, Knopoff, and Martinez-Mekler [10] and certainly
inspired by the pioneering work of Bak, Tang, and
Wiesenfeld [11]. The automaton under consideration, be-
ing externally “loaded” and due to its particular rules of
evolution, displays the propagation of a local scalar quan-
tity h;;, here defined as energy, in a form reminiscent of
an avalanche in a sandpile or a fracture in a geological
fault. The macroscopic quantity under study is the total
energy H (¢) of the system

H(=—15 5 hy(0), (L.1)
ij
where the sum is over all the N? sites of the system.
Figure 1 shows a typical behavior of the variabls H ():
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It is an irregular “saw-tooth” type of evolution with long
time intervals during which the system is loaded at con-
stant rates, followed by sudden ‘“‘avalanches,” which in a
very short time drastically reduce the energy stored in
the system. It is important to stress, and in fact is at the
core of the present work, that there is no regularity what-
soever in the occurrence of avalanches, such as quasi-
periodicity: see Fig. 2. The type of behavior shown by
the “macroscopic” variable H (¢) appears strikingly simi-
lar to the corresponding variables in the occurrence of
avalanches [5,8,9] in sandpiles and of displacements of
geological faults [1,3]. We shall comment later on the
possible relevance of the present work in the study of
those problems.

Regarding the nonperiodicity of the behavior of H(z),
the main result we want to advance here is that the mac-
roscopic quantity H (¢) is a Markovian stochastic process.
Hence we can immediately write down a master equation
for the probability distribution P(H,¢) to find the system
with total energy H at time ¢. Since the avalanches all
leave the system with essentially zero energy, we are able
to exactly solve the master equation, albeit in terms of an
unknown function. That is, the energy-dependent proba-
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FIG. 1. Typical automaton output showing the mean energy

per site H as a function of time steps.
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bility rate of occurrence of avalanches is, at the moment,
unknown. However, distributions that depend on such a
function can be independently measured: the energy dis-
tribution, the distribution of energies at which avalanches
occur, the distribution of time intervals between succes-
sive avalanches, and, very important, the time evolution
of the probability distribution P(H,t). The theory pre-
dicts several relationships among these distributions and
agreement with the automaton results is, as we shall see,
very good. We argue that this is an appropriate way of
describing the behavior of the pertinent macroscopic
variable.

In a previous study by the present authors (8], it was
shown that the angle a(?) of a sandpile in a rotating
cylinder can also be described as a Markovian process
and its description was formulated in terms of a similar
master equation. Although the purpose now is the study
per se of the stochastic dynamics of the automaton, we
believe that we may also gain further understanding on
the physical processes underlying real avalanches. That
is, it is our viewpoint that the observed irregularity of a
macroscopic variable, such as the energy of the automa-
ton, the displacement of a fault, or the angle of a sand-
pile, is of a stochastic nature and can be very well de-
scribed in terms of a master equation.

The stochastic behavior, we believe, is a consequence
of the fact that for a given value of the macroscopic vari-
able, there correspond many different microscopic stable
configurations: Let us suppose we prepare an ensemble
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FIG. 2. (a) Distribution of initiation energies £(H) vs H. (b)
Distribution of waiting times 7'(8¢) vs 6¢.
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of systems all having the same value of the macroscopic
variable, but in different microscopic states. The subse-
quent modification of those states by the slow external
load eventually takes the system from those stable
configurations to states that become unstable, but at a
different value of the macroscopic variable. The highly
dissipative, nonlinear, and complex dynamics of the un-
derlaying microscopic degrees of freedom makes a
description, at that level, a certainly difficult task. Never-
theless, there are many efforts along these directions
[6,12—17] and as we shall argue in Sec. V, there must be a
bridge, a “kineticlike theory,” to connect both types of
approaches.

The article is organized as follows. In Sec. II the cellu-
lar automaton is described in detail and the main numeri-
cal results are presented and discussed. Section III is de-
voted to the stochastic dynamics, the corresponding mas-
ter equation, and its solution. In Sec. IV we compare the
predictions of the theory with the results of the automa-
ton. We make some final remarks in Sec. V.

II. THE CELLULAR AUTOMATON

The system is a two-dimensional square lattice, of finite
size N X N, in which at each site (i,j) a scalar variable h,»j,
called energy here, is defined. The global variable that we
follow is the mean energy per site, given by

1
H:F,»Ejhij , (2.1)
where the sum is over all the sites in the lattice.

At every discrete time step a fixed amount of energy €
is added to a randomly chosen site. When the energy of a
site reaches or exceeds a prescribed threshold value 4, we
say that the site “breaks”: It transfers all of its energy in
equal parts to its ‘“‘unbroken” nearest neighbors and its
energy is thus set equal to zero. Then, if the energy of an
unbroken neighbor reaches or exceeds the threshold
value, by virtue of receiving energy from the broken one,
it also breaks and in turn transfers all of its energy in
equal parts to its unbroken nearest neighbors. This pro-
cess is repeated until no site involved in the rupture
reaches or exceeds the threshold value. This “avalanche”
is instantaneous in the sense that it occurs during one
time step.

One of the main differences from similar models
[11,18,19] is that while the avalanche or rupture is in pro-
gress, a broken site remains as such, i.e., it does not re-
ceive further energy from subsequent broken sites. Thus
it may happen that during an avalanche a site finds itself
with energy above the threshold, but with no unbroken
neighbors; then the site loses all of its energy and it is set
equal to zero. This is one of the dissipative mechanisms
of the system. The other way in which the system loses
energy is when a border site breaks: In this case, the bor-
der site transfers its energy in equal parts to its unbroken
neighbors, including those hypothetical ones outside of
the system. Namely, for the sites at the edges of the sys-
tems there is always at least one unbroken neighbor,



3970

while for the sites at the corners there are at least two.
Thus, once an avalanche reaches the borders of the sys-
tem, energy is lost.

For the particular simulation here presented we chose
the size of the lattice N =64, the threshold energy value
h.=1, and the small amount added at each time step
€=0.25. As already mentioned, this model shows a rich
variety of phenomena that can be explored by changing
the values of the different parameters and by considering
different rules of microscopic evolution; part of this has
already been discussed in Ref. [10]. Here we are interest-
ed in the similarities between the present model and the
real physical systems we have mentioned. The relevant
aspects of the process are qualitatively unchanged by
considering larger systems. The output of the automaton
is the time series of the mean energy H (t); see Fig. 1.
The results discussed below are all based on a run of ap-
proximately 7.5X 10® time steps that involves approxi-
mately 10° large avalanches, namely, avalanches where
the final state of the system has vanishing energy (H =0).

Our interest here resides in the large avalanches that
involve the whole system, leaving it with practically no
energy. This does not mean that there are no small
avalanches capable of lowering the energy of the system;
however, we can explicitly not consider them by intro-
ducing a small change in the rate of loading. In the fol-
lowing, we explain this approximation.

As pointed out, once the energy of a site reaches the
threshold value k. an avalanche begins. However, and
very important, it turns out that the avalanches either are
very large, meaning that all sites or all but less than 1%
of the sites, break, or are very small, meaning that they
involve a fraction of sites much smaller than the size of
the system. Quantitatively, this means that the probabili-
ty of occurrence of an avalanche decreases with its size
up to a certain ‘critical size,” above which the most
probable avalanche is of the size of the system. This can
be seen in Fig. 3, where we show the avalanche size distri-
bution as a function of number of sites involved, for a run
of 7.5X 108 time steps: For avalanche sizes ranging from
1 to about 100 sites (i.e., less than or equal to 2% the size
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FIG. 3. Avalanche size distribution p(x) as a function of the
number of broken sites for 7.5X 10® time steps.
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of the system) the distribution follows a characteristic
power-law behavior (with exponent —3.5) common to
these systems [10,9,12]. From about 100 to 4080 there
are about 15 avalanches; that is, the probability of oc-
currence in this range is practically zero. From 4080 to
the size of the system N2=4096 there is again a large
number of avalanches. Notice that the occurrence of
avalanches of sizes N2—1, N2—2, etc. is at least two or-
ders of magnitude less than the occurrence of avalanches
of exactly the size of the system, N 2. 1t is also clear that
the size distribution reaches a bimodal type of distribu-
tion and, for the number of time steps used here, we have
verified that the distribution has reached its values for the
small and the large avalanches. For the intermediate
sizes the distribution is still noisy, but the probability of
occurrence of those events is certainly smaller than 10~ ".
It is of interest to mention here that recent experiments
in avalanches, generated by adding grain after grain to
sandpiles [9], have shown this clear-cut separation be-
tween small and large avalanches.

Now, if the avalanche is large as described above, the
systems ends with practically zero energy H (¢)=0. But,
if the avalanche is small, then the total energy H (t) does
not necessarily change; it would do so only if the
avalanche reaches the border or if a site finds itself with
no unbroken neighbors. It turns out that between two
consecutive large avalanches there are of the order of 200
small avalanches, and of those only 10% lower the energy
of the system. However, the amount of energy released
by a small avalanche is negligible to the extent that the
quantity H (t) is insensitive to them: Fig. 1 shows a typi-
cal behavior of H (t) including both the small avalanches
and the large avalanches with sizes greater than 98% of
the size of the system. In the scale used the small ones
are barely registered and all the large ones look as if they
were the size of the system.

The above discussion explains the behavior of H (¢) as
seen in Fig. 1 and it allows us to make a ‘“‘coarse grain-
ing” approximation in order to consider only the ‘“catas-
trophic” events in which all the energy stored in the sys-
tem is lost. The way we neglect the small avalanches and

Rs(H)
4

FIG. 4. Stationary probability distribution P (H).
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FIG. 5. Time-dependent distribution P(H,t|0) vs ¢ for
several times t=1, 5, 20, and o. The latter is the stationary
distribution of Fig. 4. The time ¢ is in units of the average time
(8¢ ) between consecutive avalanches.

approximate the large ones that do not leave the system
with exactly zero energy is by interpolating from H =0 to
the value H at which the next large avalanche starts. By
doing this, we necessarily incur in an error because the
value of the “effective” loading rate () may change from
avalanche to avalanche. This change, however, is less
than 2% and it does not add another source of noise to be
explicitly considered. Here we find the value
Q=(6.1%0.1) X 1073 the uncertainty reflects the max-
imum deviation from the theoretical value Q=¢€/(N?7),
where 7 is the time step. This variation is already within
the accuracy of the simulation. We want to point out
that the coarse graining that we are doing does not mean
that the small avalanches do not play any role; as we
shall further discuss in Secs. III and V, their presence is
included in the transition probability rate of occurrence
of large avalanches. For definiteness, we shall refer to the
latter as ‘“‘avalanches” with no *“large” qualifier. In Sec.
III we present a theoretical framework to describe the
coarse grained sequence H (¢) and in Sec. IV we compare
predictions of the theory with distributions obtained from
this sequence. The agreement shown then supports the
statement that the variable H (t) is well described as a
stochastic Markov process. It should be borne in mind
that any stochastic description [20] is always an approxi-
mation; the question is how good it is.

To end this section, we introduce the relevant distribu-
tions that can be independently extracted from the time
series H (¢): (i) the (stationary) distribution P (H), which
gives the probability to find the system with a value of the
energy between H and H +dH (see Fig. 4); (ii) the distri-
bution of energies £(H) at which avalanches initiate [see
Fig. 2(a)]; (iii) the distribution of time intervals between
successive avalanches T'(8¢) [see Fig. 2(b)]; and (iv) the
distribution P (H,t;0), which gives the probability to find
the system with energy H at time ¢, given that at time
t =0 the system had energy H =0 (see Fig. 5).

III. STOCHASTIC DYNAMICS

As introduced in the preceding section, the experimen-
tal output of the automaton is the mean energy per site as

a function of time
H(=—53 hy(0), 3.1)
5]

where h;;(¢) is the energy at site (,j) and there are N 2
sites. The proposition here is that H (¢) is a Markovian
stochastic process. Although the Markovian character is
not evident, we shall develop the corresponding theory
and, in the following sections, show that the predictions
are in good agreement with the results of the simulation.
Let P(H,t;H,) be the conditional probability distribu-
tion to find the system with energy H at time ¢, given that
at time ¢ =0 the system had energy H,. The Markovian
property implies that P(H,t;H,) obeys a master equa-
tion [1,20,21]
d

0
atP(H,t)-H) aHP(H,t)

= [ " dH'[W(H,H")P(H',t)—~ W(H',H),P(H,1)] ,
(3.2)

where W(H,H') is the transition probability per unit of
time that an avalanche will take the system from H' to H.
This function bears all the relevant information of the
physics of the avalanche initiation and propagation and it
must be externally supplied. In our case, and in princi-
ple, it should be derivable from the “microscopic” dy-
namics of the automaton (in particular, it contains infor-
mation about the small avalanches). At the moment, this
function is unknown to us and its derivation is one of the
future challenges of the present approach, but with its
use in the master equation we are able to derive relation-
ships between different and independently measured dis-
tribution functions and to verify the validity of this
theory.

Let Q,(H) be the probability per unit of time for an
avalanche to start at H regardless of where it ends. It is
given by

Qo(H)= [ dH'W(H',H) . (3.3)

Since all avalanches end with H =0, it follows that
W(H,H') must have the form

W(H,H')=8(H)Q,(H') , (3.4)
with Q,(H)=0 for H =0. Equation (3.2) takes the form

d d
atP(H,t)-f—Q. aHP(H,t)+Q0(H)P(H,t)

=8(H) [ “dH'Qo(H\P(H",1) . (3.5)

Let us first construct the stationary solution P (H) of
the master equation (3.5), which must be approached as
t— oo. Moreover, since the process is stationary, P (H)
is also the one-time probability distribution [20]. P (H)
satisfies

a — ®© ’ ’ ’
Qa—HPs(H)+QO(H)PS(H)—8(H)fo dH'Q,(H')P,(H') .

(3.6)
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This is an integro-differential equation, but because of the
form of the right-hand side it can be solved as a first-
order differential equation with the right-hand side as a
constant. By direct substitution it can be verified that the
solution is

P, (H)=@(H)Pye 1), (3.7

where ®(H) is the Heavside function, I (H) is given by

— 1 H ’ ’
I(H)—-dfo dH'Q,(H') , (3.8)
and P, is the value of P (H) at H=0. By virtue of the
normalization condition, Py, is also given by

1

PO - m . (3.9)
0

An important consequence can be readily found. First,
integration of Eq. (3.6) over H, from — 0 to < yields
P.(— 0 )=P,(); but from the solution Eq. (3.7) this im-
plies that P, (— oo )=P,(0)=0. Hence, for H— o,
I(H)— . However, from the way the model is defined,
H cannot grow without bound and the divergence of
I(H) must occur at a finite H_,, <1. Since Q,(H) is a
probability rate, we find that Q,(H) must also diverge as
H—H_,, (for convenience, we shall keep « as the upper
limit of H). We note that H , =<0.75 and, in principle,
the equal sign should hold. From the simulation, howev-
er, the highest value that the energy seems to reach is at
most H . ~0.4; we shall return to this point later on.

We can construct £(H), the distribution of energies H
at which avalanches initiate, as the probability for an
avalanche to occur at H times the probability for the sys-
tem to be at H, namely,

Qo(H)P,(H)
EH)=—5
fo dH'Q,(H')P,(H')

=Logme -1, (3.10)
Q

where the second line follows from Egs. (3.7) and (3.8).

Now, from this identification and the stationary master

equation Eq. (3.6) it follows that

_C_l . H ’ ’
P(H)=3 [1 [ Maren )] , (3.11)
where ¢, is given by
c1=f0°°dHQo(H)PS(H) ; (3.12)

this quantity is also the inverse of the average time be-
tween successive avalanches and in a given time series it
is simply given by the total number of avalanches divided
by the total “observation” time. This indicates that all
the quantities involved in Eq. (3.11) can be independently
measured; in Sec. IV we shall see that Eq. (3.11) is very
accurately satisfied. It is interesting to note that we need
only P (H) in order to find £(H); this is due to the sta-
tionarity of the process; see Ref. [20].

We now return to the construction of the solution of
the time-dependent master equation (3.5). First we intro-
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duce the Laplace transform of f(z) as
~ _ © —z f) .
J@=["dze "f ()

Hence, by Laplace transforming Eq. (3.5) we obtain an
equation for P(H,z), the Laplace transform of P (H,t),

zP(H,z)—P(H,0)+Q3,P(H,z)+ Q,(H)P(H,z)
=8(H) [ “dH'Qo(H")P(H",2),  (3.14)

(3.13)

where P(H,0) is the probability distribution at time t =0,
given by

P(H,0)=68(H—H,) , (3.15)

with H, an arbitrary value (0=<H,=<H_, ). Note that
the evolution of an arbitrary initial distribution 7(H)
[different from Eq. (3.15)] can be found from

P(H,t)= [ dHP(H,t|Hy)P(H,) . (3.16)

The structure of Eq. (3.14) is very similar to that of the
stationary equation (3.6) and can be solved as a first-order
differential equation as well. By direct substitution it can
be verified that its solution is

—I(H)—(H/Q), eI(HO)-HHO/Q)z

F(H,z)z—ée (O(H—H,)

+O(H)[A(Hyz)—11} ,
(3.17)

where A (H,z) is any function of its arguments; in our
problem it is fixed by the normalization condition

[ “aH PiH,2=2 . (3.18)

0 z

For the sake of clarity and also to gain physical insight
into the solution, let us specialize to the case in which
Hy,=0, i.e., P(H,0)=38(H). That is, initially, the distri-
bution represents an ensemble of systems all being

prepared after an avalanche has just occurred. In this
case, A (H,z) has a simple form and the solution is

F(H,z)=®(H)—(1{e “IH-H/M 1+ K(z)],  (3.19)
where the function K(z) is given by
K(z)= Q (3.20)

2 f ® JH'e —I(H)—(H' /Q)z —1
0

Formally, the solution P(H,¢;0) is found by Laplace
inverting P(H,z), Eq. (3.19),

P(H,t;O)=®(H)%e_”H)

H H
8‘1‘ Q’—FK‘t Q

(3.21)
Several points are worth emphasizing: (a) It can be shown
that K (x)=0 for x <0 and therefore P(H,0;0)=06(H);
(o) for t > H_,, /Q the first term no longer contributes;
and (c) K(t —H /Q)—PyQ as t— o, recovering the sta-
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tionary solution.

Thus, in principle, the solution for all times can be con-
structed solely from the knowledge of Q,(H). We shall
show below that indeed this theory describes the evolu-
tion of H(t) as given by the automaton. However, we
can gain further understanding by analyzing the struc-
ture of the function K(z), which is intimately related to
the distributions £(H) and T(8¢).

First, we note that

éfowdHe—I(H)—(H/Q)zz_ fowdHe—umdLHe—m/mz
=1—f0°°dHe—‘H/“’Z§(H),

(3.22)

where we have integrated by parts and used Eq. (3.10).
Now, even though &(H) is not a function of time, the
above expression is formally its Laplace transform, name-
ly, we can define

Ez/Q)= fowdHe"H/ng‘(H) . (3.23)

Therefore, by substitution of Egs. (3.22) and (3.23) into
Eq. (3.20) we obtain

K z):—g‘(Tz:& , (3.24)
1—£&(z/Q)

that is, K (¢) is the “infinite convolution” of §(H),

K()=06(Q0+0 [ “dH 50t — H§H)
Qt H , _ e ,
+Q [ VdH [ "dH'§Qt — HEH —HEH')
to (3.25)

Let us now introduce a related function S(¢): The
probability (per unit of time) that in the interval of time
between ¢t and ¢ +dt an avalanche occurs, given that at
time ¢t =0 one has just taken place, regardless of how
many avalanches occurred in between. This is formally
given by

S(t)=f0°°a’H Qo(H)P(H,t;0) , (3.26)

where P(H,t;0) is the solution Eq. (3.21). By calculating
the Laplace transform of S (¢) we get

S(z)= [ "dH Qy(HP(H,2) , (3.27)

which by virtue of Egs. (3.19), (3.24), and (3.23) becomes

1—-£&(z/Q)
namely, S(z)=K (z): The function K (¢) is the probability
(per unit time) that at time ¢ an avalanche occurs.

A further relationship is also worth obtaining. Because
the rate of loading is constant, it follows that the value of
H for a time t after an avalanche has occurred is given by

H=Qt . (3.29)

(3.28)

Hence the distribution &(H) of energies at which
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avalanches initiate is related to the distribution 7'(8t¢) of
waiting times 8¢ between consecutive avalanches, as

T(5t)=Q&(Qd¢) . (3.30)

This also implies that S(¢) and T'(¢) are related as (in z
space)

S(z)
1+8(z)

These two functions are of interest, and of particular
relevance in terms of their physical content, since they
refer to the probability of occurrence of the events under
consideration without referring to the details of the pro-
cess (such as the precise state of the system at a given
time); namely, they just refer to the time statistics of the
occurrence of the events and as such, these distributions
are susceptible to being measured. We shall return to
this in Sec. V.

T(z)= (3.31)

IV. COMPARISON BETWEEN THEORY
AND THE AUTOMATON

In this section we compare some of the predictions of
the theory just introduced with the numerical results of
the cellular automaton. As we have mentioned, the out-
put of the automaton is the (coarse grained) times series
H(t) (see Fig. 1) from which the distributions P (H),
&(H), and P(H,t|0) can be independently obtained. Also,
we can measure the constant ¢, [cf. Eq. (3.12)] as the to-
tal number of avalanches divided by the total observation
time. The theory predicts relationships among the above
distributions that we now describe.

The first comparison concerns Eq. (3.11). As men-
tioned above, all the quantities involved in this equation
can be independently measured. In Fig. 6 we show such
a comparison: the left-hand side and the right-hand side
of Eq. (3.11) are plotted in the same figure. Noting that
there are no adjustable parameters, the agreement is re-
markable.

The above relationship [Eq. (3.11)] follows rigorously
from the master equation. However, it could also be pre-

G
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FIG. 6. Comparison of stationary distribution: as calculated
from Eq. (3.11) (continuous line) and obtained directly from the
automaton (dots).
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dicted [22] without using the master equation, by assum-
ing the avalanches to be independent events, which in this
case turns out to be true due to the particular form of the
transition probability distribution W (H,H'); see Eq.
(3.4). In general, as is the case of avalanches in real sand-
piles [8], for instance, the function W (H,H’) is not exact-
ly factorable and therefore the avalanches are not in-
dependent events. One should be careful not to confuse
“dependent events” with ‘“memory in the process”;
namely, the latter is a non-Markovian property while the
former implies that there is a correlation between events
at different times. In other words, independence is a
stronger condition than Markovian [20].

A more stringent test for the master equation is the va-
lidity of its solution P(H,t|0) [Eq. (3.21)] for arbitrary
times ¢ >0. This distribution can be directly extracted
from a given times series H (¢). On the other hand, in or-
der to calculate it from the theoretical expression Eq.
(3.21) we wouid have to know Q,(H), the transition prob-
ability rate for an avalanche to start at H. The function
Qo(H) can, in principle, be found from the knowledge of
P (H) only; see Egs. (3.7) and (3.8). However, in order to
calculate P(H,t|0) by this route, a numerically accurate
knowledge of Q,(H) would be necessary and, as we shall
discuss below, this turns out to be very difficult to obtain.
Instead, we present an argument of consistency of the
theory and the simulation.

We found that the conditional probability distribution
P(H,t|0)is

H

_H H
Q

t___.
Q

P(H,t;0)=®(H)—(1?e_”H) ) +K

4.1)

with P(H,0[/0)=8(H). Now, this distribution is actually
a density, namely, it gives the probability in the interval
H and H+dH. Hence the distribution in the interval
H =0 and dH as a function of time is

P(O,t|0)=®(H)?1)—[8(t)+K(t)] , 4.2)

20 PO

FIG. 7. Time-dependent distribution for H=0 and P(0,¢|0)
as a function of time ¢, in units of the average time {&¢) be-
tween consecutive avalanche.
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and therefore the distribution for H+0 can be written as

P(H,t|0)=e 1P o,t—% 0] . 4.3)
Moreover, from the stationary solution Eq. (3.7) we have
P (H)
—, —1(H) 4.4
Py e ) (4.4)
so that
20 PO20
(a)
16 4
12 4
s
4
0 +
0 2 4 6 8 10 12
t
P(0.3.¢
20 T ( b )

P(0.35,1)
0s T

04 +
03 +

02 +

FIG. 8. Comparison of the time-dependent distribution
P(H,t|0) as a function of time: as calculated from Eq. (4.5) (con-
tinuous line) and obtained directly from the automaton (dots),
for different values of the energy: (a) H=0.2, (b) H=0.3, (c)
H =0.35. Note that the agreement deteriorates for large values
of H; this is due to the poor statistics for those values (see the
text). The time ¢ is in units of the average time (8¢) between
consecutive avalanches.
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P(H,t)

FIG. 9. Combined plot of P(H,t|0) vs t and H.

P,(H)

0

0~

P(H,t|0)=
(H,t|0) Q

p 0 (4.5)

Hence we can independently extract P(0,t]0), P,(H), P,
and P (H,t|0) and substitute them into Eq. (4.5) and com-
pare. Figure 7 shows P(0,z|0), Fig. 8 shows the compar-
ison of the left- and the right-hand side of Eq. (4.5), and
Fig. 9 shows a combined plot of P(H,t|0) as a function of
H and t. Again, there are no adjustable parameters and
the agreement is very good. It is interesting to find that
the behavior of P (H,t|0) for arbitrary H and ¢ is given by
the knowledge of its asymptotic behavior for large times
and small energies. The results shown indicate that the
process is accurately described by the master equation.

V. FINAL REMARKS

We have studied a cellular automaton that, under the
action of an external load, shows an irregular sequence of
avalanches. By concentrating on the behavior of the en-
ergy H(t) of the automaton, a global macroscopic vari-
able, and not explicitly considering the dynamics of the
microscopic degrees of freedom, we have been able to de-
velop a theory that shows that in the appropriate time
scale such a variable is well described as a stochastic
Markovian process. As mentioned before, the stochasti-
city is not surprising since for any given value of H there
correspond many microscopic configurations resulting in
a type of intrinsic noise, common to many-body systems.
However, the Markovian character of the process is not
necessarily expected but, as we have shown, this appears
to be case. This is the main result of the present article.

We would like to point out that the analysis of these
automata and its stochastic treatment may be useful in
the study of real systems. This type of idea has been al-
ready suggested to be relevant in the description of earth-
quakes [1,10]. Also, experiments conducted in rotating
cylinders half filled with granular material [4,5,8] and in
sandpiles grown by adding grain after grain [9] have
shown that the angle of the granular surface behaves
similarly to the energy of the automaton. Moreover, it

has been shown [8] that the distribution of angles obeys
the same type of master equation as that found here for
the automaton. We find it very interesting to note such a
similarity despite the very different microscopic dynamics
involved.

We recall once more that the theory is not complete in
the sense that the avalanche occurrence frequency must
be additionally supplied; it should be derived from the
microscopic dynamics. To be more precise as to what a
microscopic theory should yield, we note that within the
framework of the master equation, the whole behavior is
determined once the transition probability rate W (H,H')
is known; in the present case this reduces to the function
Qo(H) [cf. Eq. (3.3)]. Here we have presented the con-
sistency between the results of the theory and the au-
tomaton, but we have not shown a derivation of Q(H) in
terms of the specific rules of evolution of the automaton.
It is of interest to note that, although it is not possible to
perform a direct measurement of Q,(H), it can be ex-
tracted from the knowledge of the stationary solution Eq.
(3.7) from which

d = P,(H)

QO(H)=QE;I—lnSP— . (5.1)
0

All the quantities on the right-hand side of this equation
are measurable and we can numerically calculate the log-
arithm and the derivative with respect to H. Figure 10
shows the result. Even though we use approximately
5% 10* avalanches, the statistics become very poor for
large H. Moreover, Q,(H) seems to be diverging at a
value near 0.36 while the highest conceivable possible
value H,, is equal to 0.75. The latter corresponds to the
situation where all sites in the lattice have energy
h;;=0.75: The following addition of energy € will trigger,
with probability 1, a large avalanche that will leave the
system with zero total energy. Thus, since the probabili-
ty to find the system with energies greater than 0.36 be-
comes very small, it is possible that we may be facing a
percolation type of transition, such that H_,, <0.75.

As a final comment, we point out the importance of the
time distributions 7T'(¢) and S (?), related to the probabili-

005 120t
004 1

0.03 +

.o
so®

FIG. 10. Avalanche initiation probability rate Qy(H) as a
function of energy. The statistics are poor for high values of H,
see Fig. 8 and the text.
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ties of occurrence of an event at time ¢ given that one oc-
curred at t =0, [cf. Egs. (3.26) and (3.31)]. Besides their
obvious value in seismological studies, these distributions
have the quality that they are the easiest quantities to
measure. As we showed in Sec. III, these distributions
can be derived from the master equation and therefore
are related to the details of the process. Thus the sto-
chastic nature of these processes and the probabilistic

predictions given by the present approach are fully con-
tained in these distributions.
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